Worksheet for 2020-04-17

Conceptual Review

Question 1. Qualitatively describe the following parametric surfaces.

- (a) $\mathbf{r}(u, v) = \langle u + v, -u, v \rangle$
- (b) $\mathbf{r}(u,v) = \langle u^2, -u, v \rangle$
- (c) $\mathbf{r}(u, v) = \langle u \cos(2v), v, u \sin(2v) \rangle$ (you may see this surface again on an upcoming written HW)

Question 2. What is one way you could parametrize the graph of a function f(x, y), in other words the surface defined by z = f(x, y)?

Question 3. Suppose that all of the *u* and *v* grid curves of a parametric surface $\mathbf{r}(u, v)$ are lines. Does it follow that the parametric surface must be a plane?

Problems

Problem 1. Find a normal vector to the plane $\mathbf{r}(u, v) = \langle u + v, u - v, 2u \rangle$ by

- (a) finding a Cartesian equation for the plane (i.e. a single equation of x, y, z) and reading off a normal vector from that.
- (b) using the $\mathbf{r}_u \times \mathbf{r}_v$ method.

Problem 2. Consider the portion of the cone $z = \sqrt{x^2 + y^2}$ below the plane z = 3. Compute its surface area

- (a) using calculus (i.e. techniques from §16.5).
- (b) without using calculus. Hint: cut a slit in the cone and unfold it into a "pacman" shape.